981 research outputs found

    Survey Report: Audio Branding Support Systems

    Get PDF
    Existing tools for use in audio branding are surveyed and typical core work steps are defined. Particular attention is paid to professional metaphors in use and intuitive usability which support audio branding communication, workflows, automation, monitoring and maintenance. Furthermore design of UIs which give representation support are examined in detail. Results are arranged into concrete requirements and recommendations for the project's tool developments.EC/H2020/688122/EU/Artist-to-Business-to-Business-to-Consumer Audio Branding System/ABC D

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar

    Get PDF

    Observation of the B0 → ρ0ρ0 decay from an amplitude analysis of B0 → (π+π−)(π+π−) decays

    Get PDF
    Proton–proton collision data recorded in 2011 and 2012 by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb−1 , are analysed to search for the charmless B0→ρ0ρ0 decay. More than 600 B0→(π+π−)(π+π−) signal decays are selected and used to perform an amplitude analysis, under the assumption of no CP violation in the decay, from which the B0→ρ0ρ0 decay is observed for the first time with 7.1 standard deviations significance. The fraction of B0→ρ0ρ0 decays yielding a longitudinally polarised final state is measured to be fL=0.745−0.058+0.048(stat)±0.034(syst) . The B0→ρ0ρ0 branching fraction, using the B0→ϕK⁎(892)0 decay as reference, is also reported as B(B0→ρ0ρ0)=(0.94±0.17(stat)±0.09(syst)±0.06(BF))×10−6

    Angular analysis of the B-0 -> K*(0) e(+) e(-) decay in the low-q(2) region

    Get PDF
    An angular analysis of the B0K0e+eB^0 \rightarrow K^{*0} e^+ e^- decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q2q^2) interval between 0.002 and 1.120GeV2 ⁣/c4{\mathrm{\,Ge\kern -0.1em V^2\!/}c^4}. The angular observables FLF_{\mathrm{L}} and ATReA_{\mathrm{T}}^{\mathrm{Re}} which are related to the K0K^{*0} polarisation and to the lepton forward-backward asymmetry, are measured to be FL=0.16±0.06±0.03F_{\mathrm{L}}= 0.16 \pm 0.06 \pm0.03 and ATRe=0.10±0.18±0.05A_{\mathrm{T}}^{\mathrm{Re}} = 0.10 \pm 0.18 \pm 0.05, where the first uncertainty is statistical and the second systematic. The angular observables AT(2)A_{\mathrm{T}}^{(2)} and ATImA_{\mathrm{T}}^{\mathrm{Im}} which are sensitive to the photon polarisation in this q2q^2 range, are found to be AT(2)=0.23±0.23±0.05A_{\mathrm{T}}^{(2)} = -0.23 \pm 0.23 \pm 0.05 and ATIm=0.14±0.22±0.05A_{\mathrm{T}}^{\mathrm{Im}} =0.14 \pm 0.22 \pm 0.05. The results are consistent with Standard Model predictions.An angular analysis of the B0^{0} → K^{*}^{0} e+^{+} e^{−} decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 fb1^{−1}, collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q2^{2}) interval between 0.002 and 1.120 GeV2^{2} /c4^{4}. The angular observables FL_{L} and ATRe_{T}^{Re} which are related to the K^{*}^{0} polarisation and to the lepton forward-backward asymmetry, are measured to be FL_{L} = 0.16 ± 0.06 ± 0.03 and ATRe_{T}^{Re}  = 0.10 ± 0.18 ± 0.05, where the first uncertainty is statistical and the second systematic. The angular observables AT(2)_{T}^{(2)} and ATIm_{T}^{Im} which are sensitive to the photon polarisation in this q2^{2} range, are found to be AT(2)_{T}^{(2)}  = − 0.23 ± 0.23 ± 0.05 and ATIm_{T}^{Im}  = 0.14 ± 0.22 ± 0.05. The results are consistent with Standard Model predictions.An angular analysis of the B0K0e+eB^0 \rightarrow K^{*0} e^+ e^- decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q2q^2) interval between 0.002 and 1.120GeV2 ⁣/c4{\mathrm{\,Ge\kern -0.1em V^2\!/}c^4}. The angular observables FLF_{\mathrm{L}} and ATReA_{\mathrm{T}}^{\mathrm{Re}} which are related to the K0K^{*0} polarisation and to the lepton forward-backward asymmetry, are measured to be FL=0.16±0.06±0.03F_{\mathrm{L}}= 0.16 \pm 0.06 \pm0.03 and ATRe=0.10±0.18±0.05A_{\mathrm{T}}^{\mathrm{Re}} = 0.10 \pm 0.18 \pm 0.05, where the first uncertainty is statistical and the second systematic. The angular observables AT(2)A_{\mathrm{T}}^{(2)} and ATImA_{\mathrm{T}}^{\mathrm{Im}} which are sensitive to the photon polarisation in this q2q^2 range, are found to be AT(2)=0.23±0.23±0.05A_{\mathrm{T}}^{(2)} = -0.23 \pm 0.23 \pm 0.05 and ATIm=0.14±0.22±0.05A_{\mathrm{T}}^{\mathrm{Im}} =0.14 \pm 0.22 \pm 0.05. The results are consistent with Standard Model predictions

    Measurement of the Z plus b-jet cross-section in pp collisions at root s=7 TeV in the forward region

    Get PDF
    The associated production of a Z boson or an off-shell photon γ\gamma^* with a bottom quark in the forward region is studied using proton-proton collisions at a centre-of-mass energy of 7TeV7{\mathrm{\,Te\kern -0.1em V}}. The Z bosons are reconstructed in the Z/γμ+μ{\text{Z}/\gamma^*}\rightarrow{\mu^{+}\mu^{-}} final state from muons with a transverse momentum larger than 20GeV20{\mathrm{\,Ge\kern -0.1em V}}, while two transverse momentum thresholds are considered for jets (10GeV10{\mathrm{\,Ge\kern -0.1em V}} and 20GeV20{\mathrm{\,Ge\kern -0.1em V}}). Both muons and jets are reconstructed in the pseudorapidity range 2.010GeV2.0 10{\mathrm{\,Ge\kern -0.1em V}}, and \sigma(\text{\text{Z}/\gamma^*(\mu^{+}\mu^{-})+b-jet}) = 167 \pm 47 (\text{stat}) \pm 29 (\text{syst}) \pm 6 (\text{lumi}) {\,{fb}} for {p_{\rm T}}(jet)>20GeV>20{\mathrm{\,Ge\kern -0.1em V}}

    Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state

    Get PDF
    A search for the rare decays Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions are measured to be B(Bs0π+πμ+μ)=(8.6±1.5(stat)±0.7(syst)±0.7(norm))×108\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0π+πμ+μ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×108\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0J/ψ(μ+μ)K(890)0(K+π)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0π+πμ+μ)=(8.6±1.5(stat)±0.7(syst)±0.7(norm))×108\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0π+πμ+μ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×108\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0J/ψ(μ+μ)K(890)0(K+π)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation

    Search for the lepton flavour violating decay tau(-) -> mu(-)mu(+)mu(-)

    Get PDF
    A search for the lepton flavour violating decay τμμ+μ\tau^-\rightarrow\mu^-\mu^+\mu^- is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb1^{−1} of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb1^{−1} at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, B(τμμ+μ)<4.6×108\mathcal{B}(\tau^-\rightarrow\mu^-\mu^+\mu^-)<4.6\times10^{−8}.A search for the lepton flavour violating decay τ^{−} → μ^{−} μ+^{+} μ^{−} is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0 fb1^{−1} of proton-proton collisions at a centre-of-mass energy of 7 TeV and 2.0 fb1^{−1} at 8 TeV. No evidence is found for a signal, and a limit is set at 90% confidence level on the branching fraction, B(τμμ+μ)<4.6×108 \mathrm{\mathcal{B}}\left({\tau}^{-}\to {\mu}^{-}{\mu}^{+}{\mu}^{-}\right)<4.6\times {10}^{-8} .A search for the lepton flavour violating decay τμμ+μ\tau^-\to \mu^-\mu^+\mu^- is performed with the LHCb experiment. The data sample corresponds to an integrated luminosity of 1.0fb11.0\mathrm{\,fb}^{-1} of proton-proton collisions at a centre-of-mass energy of 7TeV7\mathrm{\,Te\kern -0.1em V} and 2.0fb12.0\mathrm{\,fb}^{-1} at 8TeV8\mathrm{\,Te\kern -0.1em V}. No evidence is found for a signal, and a limit is set at 90%90\% confidence level on the branching fraction, B(τμμ+μ)<4.6×108\mathcal{B}(\tau^-\to \mu^-\mu^+\mu^-) < 4.6 \times 10^{-8}
    corecore